研究成果

文獻發表

文獻發表



(01) Huang et al., Effects of Cordyceps sinensis on testosterone production in normal mouse Leydig cells. Life Sciences 2001 Oct;69: 2593-2602.
(02) Huang et al., Cordyceps sinensis and its fractions stimulate MA-10 mouse Leydig tumor cell steroidogenesis. Journal of Andrology 2001 Sep-Oct;22: 831-837.
(03) Hsu et al., In vivo and in vitro stimulatory effects of Cordyceps sinensis on testosterone production in mouse Leydig cells. Life Sciences 2003 Sep;73: 2127–2136.
(04) Nakamura et al., Five new maleic and succinic acid derivatives from the mycelium of Antrodia camphorata and their cytotoxic effects on LLC tumor cell line. J Nat Prod. 2004 Jan;67:46-8.
(05) Huang et al., In vivo stimulatory effect of Cordyceps sinensis mycelium and its fractions on reproductive functions in male mouse. Life Sciences 2004 Jul;75: 1051–1062.
(06) Liu et al., Molecular genetic manipulation of Pichia pastoris SEC4 governs cell growth and glucoamylase secretion. Biochem Biophys Res Commun. 2005 Nov;336(4):1172-80.
(07) Liu et al., Improved secretory production of glucoamylase in Pichia pastoris by combination of genetic manipulations. Biochem Biophys Res Commun. 2005 Jan;326(4):817-24.
(08) Kuo et al., Cordyceps sinensis mycelium protects mice from group A streptococcal infection. J. medicinal Microbiol. 2005 Aug;54: 795-802.
(09) Han et al., Protective effects of a neutral polysaccharide isolated from the mycelium of Antrodia cinnamomea on Propionibacterium acnes and lipopolysaccharide induced hepatic injury in mice. Chem Pharm Bull (Tokyo). 2006 Apr;54:496-500.
(10) Han et al., Quantitative determination of maleic and succinic acid derivatives in the mycelia of Antrodia cinnamomea. J. Trad. Med. 2006 23:10-23.
(11) Chou et al., The family 21 carbohydrate-binding module of glucoamylase from Rhizopus oryzae consists of two sites playing distinct roles in ligand binding. Biochem J. 2006 Jun;396(3):469-77.
(12) Lin et al., Role of the linker region in the expression of Rhizopus oryzae glucoamylase. BMC Biochem. 2007 Jun;8:9.
(13) Liu et al., Solution structure of family 21 carbohydrate-binding module from Rhizopus oryzae glucoamylase. Biochem J. 2007 Apr;403(1):21-30.
(14) Kuo et al., Abrogation of streptococcal pyrogenic exotoxin B-mediated suppression of phagocytosis in U937 cells by Cordyceps sinensis mycelium via production of cytokines. Food and Chemical Toxicol. 2007 Feb;45: 278–285.
(15) Liu et al., Identification and characterization of a novel fibril forming peptide in fungal starch binding domain. Biochem Biophys Res Commun. 2008 Dec;377(3):966-70.
(16) Tung et al., Crystal structures of the starch-binding domain from Rhizopus oryzae glucoamylase reveal a polysaccharide-binding path. Biochem J. 2008 Nov;416(1):27-36.
(17) Phuong et al., Inhibitory effects of antrodins A-E from Antrodia cinnamomea and their metabolites on hepatitis C virus protease. Phytother. Res. 2009 Apr;23: 582-584.
(18) Lin et al., CBM21 starch-binding domain: a new purification tag for recombinant protein engineering. Protein Expr Purif. 2009 Jun;65(2):261-6.
(19) Chou et al., F
eature-incorporated alignment based Ligand-binding residue prediction for carbohydrate binding modules. Bioinformatics. 2010 Apr;26:1022-1028.
(20) Huang et al., Agaricus Blazei Murill ameliorates myocardial ischemia-reperfusion injury. Acta Cardiol Sin. 2010 Dec;26:235-241.
(21) Chou et al., Hydrophilic aromatic residue correlation and structure modeling for carbohydrate binding modules. PloS ONE. 2011 Sep;6:e24814.
(22) Jiang et al., Two unique ligand-binding clamps of Rhizopus oryzae starch binding domain for helical structure disruption of amylose. PloS ONE. 2012 Jul;7:e41131.
(23) Sudirman et al., Effect of Fucoidan on Anterior Cruciate Ligament Transection and Medial Meniscectomy Induced Osteoarthritis in High-Fat Diet-Induced Obese Rats. Nutrients. 2018 May;10, 686.